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ABSTRACT
Recent research has demonstrated that human-generated re-
ward signals can be effectively used to train agents to per-
form a range of reinforcement learning tasks. Such tasks
are either episodic—i.e., conducted in unconnected episodes
of activity that often end in either goal or failure states—
or continuing—i.e., indefinitely ongoing. Another point of
difference is whether the learning agent highly discounts the
value of future reward—a myopic agent—or conversely val-
ues future reward appreciably. In recent work, we found that
previous approaches to learning from human reward all used
myopic valuation [7]. This study additionally provided evi-
dence for the desirability of myopic valuation in task domains
that are both goal-based and episodic.

In this paper, we conduct three user studies that examine crit-
ical assumptions of our previous research: task episodicity,
optimal behavior with respect to a Markov Decision Process,
and lack of a failure state in the goal-based task. In the first
experiment, we show that converting a simple episodic task
to non-episodic (i.e., continuing) task resolves some theo-
retical issues present in episodic tasks with generally posi-
tive reward and—relatedly—enables highly successful learn-
ing with non-myopic valuation in multiple user studies. The
primary learning algorithm in this paper, which we call “VI-
TAMER”, is the first algorithm to successfully learn non-
myopically from human-generated reward; we also empiri-
cally show that such non-myopic valuation facilitates higher-
level understanding of the task. Anticipating the complex-
ity of real-world problems, we perform two subsequent user
studies—one with a failure state added—that compare (1)
learning when states are updated asynchronously with local
bias—i.e., states quickly reachable from the agent’s current
state are updated more often than other states—to (2) learn-
ing with the fully synchronous sweeps across each state in the
VI-TAMER algorithm. With these locally biased updates, we
find that the general positivity of human reward creates prob-
lems even for continuing tasks, revealing a distinct research
challenge for future work.
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INTRODUCTION
The constructs of reward and punishment form the founda-
tion of psychological models that have provided powerful in-
sights into the behavior of humans and other animals. Reward
and punishment are frequently received in a social context,
from another social agent. In recent years, this form of com-
munication and its machine-learning analog—reinforcement
learning—have been adapted to permit teaching of artificial
agents by their human users [4, 14, 6, 13, 11, 10]. In this
form of teaching—which we call interactive shaping—a user
observes an agent’s behavior while generating human reward
instances through varying interfaces (e.g., keyboard, mouse,
or verbal feedback); each instance is received by the learning
agent as a time-stamped numeric value and used to inform fu-
ture behavioral choices. Here the trainer considers his or her
reward to encompass colloquial concepts like “reward” and
”punishment”, “approval” and “disapproval”, or something
similar.1

Interactive shaping enables people—without programming
skills or complicated instruction—to specify desired behav-
ior and to share task knowledge when correct behavior is al-
ready indirectly specified (e.g., by a pre-coded reward func-
tion). Further, in contrast to the complementary approach of
learning from demonstration [1], learning from human reward
employs a simple task-independent interface, exhibits learned
behavior during teaching, and, we speculate, requires less
task expertise and places less cognitive load on the trainer.

Concepts and definitions
Interactive shaping can be framed as having two different
objectives. The task objective represents what the trainer is
attempting to teach and determines an agent’s task perfor-
mance. For instance, when training an agent to play Tetris [6],
the task objective might be maximizing the number of lines
cleared per game or stacking as many blocks to the far right as
1The term “punishment” is used here only in psychological and col-
loquial contexts. In artificial intelligence, the term “reward” includes
both positively and negatively valued feedback.
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Figure 1. An illustration of the agent’s learning algorithm, where inputs
to the human are not represented. Human reward instances change the
predictive reward model R̂H , which is used as the reward function in an
MDP. A reinforcement learning agent learns from the most recent MDP.

possible; the trainer decides the task objective unless it is pre-
specified and communicated to the trainer, as we do for exper-
imental purposes. The agent has no access to the trainer’s task
objective; setting aside the possibility of pre-programmed a
priori knowledge (without loss of generality), we observe that
the agent instead only experiences its own state-action his-
tory and the reward instances given by the trainer. Thus, the
learning agent needs its own objective, which we define with
respect to the human-generated reward it receives. Following
this approach, any solution to the interactive shaping problem
includes two parts: (1) a reward-based objective for the agent
and (2) a learning algorithm that effectively improves on this
objective with experience.

We focus on the space of reward-based objectives used in
reinforcement learning (RL) for Markov Decision Processes
(MDPs) [12]. MDPs are denoted as {S,A, T,R, γ,D}.2
RL algorithms seek to learn policies (π : S → A) for an
MDP that improve its discounted sum long-term reward—
i.e., its return—from each state, where return is expressed as
Qπ(s, π(s)) and defined in terms of reward as Qπ(s, a) =∑∞
t=0Eπ[γ

tR(st, at)] (with 00 = 1). We refer to return-
maximizing policies as MDP-optimal; on the other hand,
policies that maximize the task objective are called task opti-
mal.

For the experiments described in this paper, a Markovian
model of human reward, R̂H , is learned from human reward
instances. This model completes an MDP specification for
the agent to learn in, {S,A, T, R̂H , γ,D} (Figure 1). Thus,
the output of R̂H(s, a) for an agent’s current state s and ac-
tion a is the actual reward experienced by the learning agent.
In this research, we seek to find reward-based objectives such
that algorithms that perform well on the reward-based objec-
tive with reward functions modeled on human trainers’ re-
ward also perform well on the task objective. If we were
concerned only with optimal behavior (we are not), this goal
could be restated as finding reward-based objectives such that
MDP-optimal behavior is also task optimal.

2Here, S and A are the sets of possible states and actions; T
is a function describing the probability of transitioning from one
state to another given a specific action, such that T (st, at, st+1) =
P (st+1|st, at); R is a reward function, R : S × A → <, with a
state and an action as inputs; γ ∈ [0, 1] is a discount factor, con-
trolling how much expected future reward is valued; and D is the
distribution of start states for each learning episode.

An important aspect of reward-based objectives is temporal
discounting, which is controlled by the γ parameter of MDPs.
As shown in the expression of return above, when γ = 0 the
objective is fully myopic. A fully myopic agent only values
the reward from its immediate state and action; expected fu-
ture reward is not valued. At the other extreme, an agent with
a γ = 1 objective values near-term reward equally to reward
infinitely far in the future. When γ ∈ (0, 1), future reward is
discounted at an exponential rate, making near-term reward
more valuable than long-term reward. Higher γ values result
in a lower discount rate.

An additional dimension of MDPs is episodicity: whether the
task is episodic or continuing. In an episodic task, the agent
can reach one or more episode-terminating states, which are
called “absorbing states” in the RL literature [12]. Upon
reaching an absorbing state, the learning episode ends, a new
episode starts with state chosen independently of the reached
absorbing state, and the agent experiences reward that is not
attributable to behavior during the previous episode. Absorb-
ing states often either represent success or failure at the task,
constituting goal states or failure states; we call tasks with
goal states “goal-based”. In contrast to an episodic task, a
continuing task is ongoing, wherein all reward is attributable
to all past behavior, if discounting permits.

As we describe more specifically later in this section, we ex-
plore the impact on task performance of the agent’s reward-
based objective along four dimensions: (1) the discount fac-
tor, (2) whether a task is episodic or continuing, (3) whether
the agent acts approximately MDP-optimal or is less effec-
tive in maximizing its return, and (4) the effect of having a
failure state as well as the goal state. In addition to under-
standing the effects of these four dimensions on the agent’s
task performance, this paper concerns two questions: How
can an agent learn from human reward at low discount rates
(i.e., non-myopically, with high discount factors)? What ben-
efits are conferred by low discount rates?

Background
A critical precursor to this work is our investigation of the
impact of discounting in goal-based, episodic tasks [7]. In-
vestigating the six previous projects that we know to have in-
volved learning from positively and negatively valued human-
generated reward [4, 14, 13, 11, 9, 10] (including by email
with corresponding authors), we identified a curious trend:
all such projects have been much more myopic—i.e., using
high discount rates—than is usual in RL. We hypothesized
that a cause of this pattern is the general positivity of hu-
man reward. More specifically, if the previously observed
positive bias in human reward creates at least one “positive
circuit”—i.e., repeatable sequences of behavior that net posi-
tive total reward—then an MDP-optimal agent in an episodic,
goal-based task will avoid the goal if acting without discount-
ing, since the absorbing state of the goal prevents accrual of
further reward. To investigate this hypothesis, we previously
conducted a user study of agent training in a simple grid-
world task (shown later in Figure 4), varying the experimental
conditions only by the discount factor in the agent’s reward-
based objective. Experimental results showed (1) that higher
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Figure 2. Success rates by discount factor for our prior experiment.Ratios of positive to negative reward
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Figure 3. From our prior experiment, the ratio of cumulative posi-
tive reward to cumulative negative reward given by each trainer, sep-
arated by discount factor condition and task performance. X-axis jitter
was added for readability. Within each condition, a horizontal line was
placed above the mark for the highest ratio at which a subject trained
the agent to reach the goal at least once.

discount rates (i.e., lower γs) led to better performance, (2)
that lower discount rates result in more negative reward over-
all (fittingly, since increased negativity helps address the posi-
tive circuits problem), and (3) that successful trainers at lower
discount rates give more negative reward than do unsuccess-
ful ones. Additionally, 66.7% of trainers across all conditions
created at least one positive circuit, meaning that those agents
would never greedily reach the goal if discounting at γ = 1.
The results of this experiment are reproduced in Figures 2 and
3.

Preview of experiments
Using adaptations of the same task, experimental design, and
agent algorithm—which we dub VI-TAMER—this paper in-
cludes three user studies that examine three important as-
sumptions of our prior work:
1. The task is episodic.
2. The agent can act approximately MDP-optimally with re-

spect to the agent’s current predictive model of human re-
ward.

3. The task has a goal state but lacks failure states.
The task and agent algorithm are described in detail in the
Continuing-task experiment section.

Repeating our prior experiment in a continuing version
of the same task—in what we call the continuing-task
experiment—we make the following four observations.
First, we find for discount factors γ < 1 that task performance
of MDP-optimal policies during training is generally high and
independent of discounting; in contrast, such policies do not
perform well at high γs when the task is episodic. Second,
strong correlations observed in their episodic-task experiment
disappear. Third, in this investigation, the γ = 0.99 condition

with the VI-TAMER algorithm is the first known instance of
successful learning from human-generated reward at a low
discount rate (i.e., a high gamma with relatively long time
steps). Fourth, in two additional tests using the training data
from this continuing-task experiment, we find evidence for
the theoretically based conjecture that low discount rates fa-
cilitate the communication of higher-level task information—
e.g., the location of the goal rather than the exact sequence
of steps to reach it. Such higher-level information enables
learning that is more robust to environmental changes, better
guides action in unexperienced states, and leads the agent to
learn policies that surpass those known to the trainer.
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Figure 4. The baseline grid
world task. To display the
agent’s actions and state tran-
sitions to the trainer, (1) wheel
tracks are drawn from the
agent’s previously occupied
cell, and (2) the simulated
robot’s eyes point in the direc-
tion of the last action. The
start and goal cells are labeled
‘S’ and ‘G’ respectively.

In our second experiment—
the local-bias experiment—
we examine task perfor-
mance under low discount
rates when the agent cannot
generally act approximately
MDP-optimally. This ex-
periment is motivated by an
anticipation of converting
VI-TAMER to more complex
tasks, where MDP-optimal
behavior is intractable.
Specifically, we focus on an
agent that updates the values
of state-action pairs with a
local bias, meaning that pairs
reachable within a few steps
of the agent’s current state
receive more updates than
those further away. Such lo-
cally biased updates are a common characteristic among RL
algorithms. With such local bias, we find that performance
decreases, apparently because of further problems created by
the positivity of human reward.

Our third experiment—the failure-state experiment—
boosts the generality of conclusions from the previous two ex-
periments (and our prior experiments [7]) by adding a failure
state to the goal-based task and then repeating the γ = 0.99
conditions from these previous experiments. The results from
this failure-state experiment follow patterns observed in the
previous experiments, though sometimes with less signifi-
cance (likely because of smaller effect sizes).

In the following section, we describe baselines for the agent
algorithm, the task, and the experimental design. In each of
the subsequent three sections, one of the three experiments
is described along with an analysis of its results. We then
conclude the paper.

BASELINES FOR THE TASK, AGENT, AND EXPERIMENT
Here we describe baseline versions of the task, the agent, and
the experiment, which are equivalent to those for the grid-
world experiment from our prior work [7]. Unless other-
wise specified, this baseline set is used in each of this paper’s
experiments. Given space requirements, we keep these de-
scriptions at a high level. Full details can be found at http:
//www.cs.utexas.edu/users/bradknox/papers/13iui/.

http://www.cs.utexas.edu/users/bradknox/papers/13iui/
http://www.cs.utexas.edu/users/bradknox/papers/13iui/


The task
The task is a grid world with 30 states, shown in Figure 4.
At each step, the agent acts once by moving up, down, left,
or right, and attempted movement through a wall results in
no movement during the step. Task performance metrics are
based on the time steps taken to reach the goal. The agent
always starts a learning episode in the state labeled “S” in
Figure 4. The shortest path from the start state requires 19
actions. Each time step lasts approximately 800 ms.

In the episodic version of this task, the goal state is absorbing.
In the continuing version, upon transitioning into the goal, the
agent instead experiences a transition to the start state. Con-
sequently, reward received in one “episode” can be attributed
to state-action pairs in the previous “episode” (and farther in
the past). Though reaching the goal in the continuing ver-
sion does not mark the end of an episode, we continue to use
the word “episode” to refer to the periods of time that are di-
vided by the attainment of the goal. Another valid perspective
for the reader is to assume the task is fundamentally episodic
and that the continuing version is simply tricking the agent to
make it experience the task as continuing.

The agent
In all experiments a model of human reward, R̂H , is learned
through the TAMER framework [6], and the output of this
model provides reward for the agent within an MDP spec-
ified as {S,A, T, R̂H , γ,D}. Figure 1 illustrates this sce-
nario. During training, human reward signals form labels
for learning samples that have state-action pairs as features;
a regression algorithm continuously updates R̂H with new
features. For experiments in this paper, the TAMER mod-
ule represents R̂H as a linear model of Gaussian radial ba-
sis functions (RBFs) and updates the model by incremen-
tal gradient descent, as in our prior work [7]. One RBF is
centered on each cell of the grid world, effectively creating
a pseudo-tabular representation that generalizes slightly be-
tween nearby cells.

During training for all experiments, human reward was com-
municated via the ‘/’ and ‘z’ keys on the keyboard, which
respectively mapped to 1 and -1. This mapping to 1 and
-1, though not infallible, is an intuitive choice that is sim-
ilar to that of related works that explain their exact map-
pings [14, 13, 10, 11]. Additionally, this interface allows
richer feedback than it superficially appears to for two rea-
sons. First, reward signals are asynchronous to actions, so
the rate of reward signaling determines intensity. Second, to
account for delays in giving feedback, the causal attribution
of each reward is distributed across multiple recent time steps
by TAMER’s credit assignment module [5], further adding va-
riety to the label values of samples for training R̂H .

The agent seeks to improve its return—i.e., its reward-
based objective—with respect to the current R̂H ,∑∞
t=0E[γtR̂H(st, π(st))], but we empirically evaluate

the agent by task performance metrics that are not reward-
based (see the list of statistical tests in description of the
baseline experiment below). The reinforcement learning
algorithm used by the agent is value iteration [12] with

greedy action selection. However, unlike traditional value
iteration (in which the algorithm iterates until state values
converge), here one update sweep occurs over all of the states
every 20 ms, creating approximately 40 sweeps per step. The
agent’s value function is initialized to zero once, at the start
of training only, for reasons discussed in the analysis of the
second experiment. We call this value iteration algorithm
with TAMER-based modeling of human reward “VI-TAMER”.

Because the agent in this experiment learns from a frequently
changing reward function, behaving optimally with respect
to the current reward function is difficult. For the simple task
we have chosen, value iteration creates approximately MDP-
optimal behavior with small lag in responding to changes to
the reward function, a lag of a few time steps or less. Thus,
we can be confident that observed differences between exper-
imental conditions can be attributed to the reward-based ob-
jective, not deficiencies in maximizing that objective.

The experiment
All experiments were conducted through subjects’ web
browsers via Amazon Mechanical Turk. Subjects were ran-
domly assigned to an experimental condition. They were pre-
pared with video instructions and a period of controlling the
agent followed by a practice training session. During these
instructions, subjects are told to give “reward and punish-
ment” to the green “Kermitbot” to “teach the robot to find
the water as fast as possible.” Trainers were left to determine
their own reward strategies, possibly including rewarding ev-
ery time the agent acts as they would have acted or rewarding
highly when the agent reaches the goal.

The actual training session stopped after the agent reached the
goal 10 times (i.e., 10 episodes) or after 450 steps, whichever
came first (unless otherwise specified). This stopping time
is the only difference between these baseline components
and our prior grid-world experiment, in which trainers were
stopped after the first of 5 episodes or 300 time steps [7].

A training sample is removed from analysis if it fulfills any
of the following conditions: the sample was created from the
second or later time that a specific worker acted as a sub-
ject, the log file is incomplete, the user mistyped his or her
condition-specifying user ID such that the condition was in-
correctly specified, or the user gave less than 2 instances of
feedback per 100 time steps, which we consider to be non-
compliance with our experimental instructions.

Because we repeat many of the same statistical tests through-
out this paper, we define and name our more common tests
here:
• Fisher Success - a Fisher’s Tests comparing outcomes of

reaching the goal allN times or not by condition, whereN
is specified as a threshold

• MWU Episodes Finished - a Mann Whitney U test where
the dependent variable is the number of episodes com-
pleted before training was stopped

• MWU Time To Goal - a Mann Whitney U test where the
dependent variable is how many steps occurred before the
agent reached the goal for the first time



• Spearman Success - a Spearman correlation test of the ra-
tios of positive to negative reward and success within a spe-
cific condition

CONTINUING-TASK EXPERIMENT
In the experiment described in this section, we investigate the
impact of the discount rate when a task is continuing. For
episodic tasks, we previously argued that a positive reward
bias among human trainers combined with high discount fac-
tors can lead to infinite behavioral circuits—created by what
we call “positive circuits”—and consequently minimal task
performance [7]. For episodic tasks, we found that myopic
discounting (low γs) avoids this problem; the Introduction de-
scribes these prior results in more detail. However, positive
circuits may only cause severe problems in episodic tasks,
since an agent reaching an absorbing goal state is effectively
penalized; it is exiting a world rich with positive reward. We
examine another strategy to remove this penalty: formulate
the task as continuing, making the goal a gateway to more
opportunity to accrue reward. Unlike for episodic MDPs, the
optimal policy of a continuing MDP is unaffected by adding a
constant value to all reward; thus, the positivity of human re-
ward should not present the same problem for MDP-optimal
policies in continuing tasks.

Experiment and analysis of results
This experiment uses the baseline agent, experimental design,
and continuing task, repeating our prior experiment almost
exactly, only changing the task to be continuing as described
in The task. For consistency with the previous experiment,
we analyze data from the first 5 episodes that occur before
the 301st time step and also retain the γ = 1 condition, even
though such discounting is generally inappropriate for contin-
uing tasks. 25 subjects were run per condition, and one sub-
ject in the γ = 0.9 condition was replaced by another subject
for not following instructions (a practice followed only in this
experiment). After filtering, for γs of 0, 0.7, 0.9, 0.99, and 1,
there were respectively 20, 21, 20, 23, and 23 subjects. Fig-
ures 5 and 6 show results (presented analogously to Figures 2
and 3).

In comparison to our prior episodic-task experiment [7], the
results in the continuing-task version are markedly different.
As shown in Figure 5, the task success rate at γ = 1 is lower
than at other conditions, which we expect given that this dis-
counting is generally avoided for continuing tasks to make re-
wards in the finite future meaningful. The other discount fac-
tors create similar task performance, with γ = 0.99 achiev-
ing the highest mean rate of full success. Fisher-Success tests
with a 5-episode threshold find a marginally significant differ-
ence between γ = 0.99 and γ = 1 conditions (p = 0.0574);
no other pairwise comparisons between conditions are signif-
icantly different.3

3Note that episodicity cannot affect a γ = 0 agent, making this
condition identical to the γ = 0 condition of our prior experiment.
The difference in success rate at γ = 0 in the two grid world ex-
periments is likely because of either randomness—their difference
is insignificant by a Fisher-Success test with a 5-episode threshold
(p = 0.2890)—or this experiment, run at a different time, sampled
from a lower-performing population.
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Figure 5. Success rates for the continuing-task experiment by discount
factor.
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Figure 6. For the continuing-task experiment, ratio of cumulative pos-
itive reward to cumulative negative reward given by each trainer (with
x-axis jitter).

Patterns exhibited by the ratios of cumulative positive reward
to cumulative negative reward among trainers (as shown in
Figure 6) also differ from the episodic experiment. Specifi-
cally, there is no significant correlation between the ratios of
fully successful trainers and discount factor when γ = 1 is
excluded (Spearman coefficient ρ = −0.0564, p = 0.6628),
though the correlation is significant with γ = 1 included
(ρ = −0.3233, p = 0.0050). Further, the relationship be-
tween reward positivity and task performance is closer to
the intuitive expectation that high-performance agents receive
more positively-biased reward: ratios and success categories
(no, partial, and full success) are significantly correlated in
the γ ≤ 0.9 conditions (Spearman’s coefficient ρ > 0.595,
p < 0.006 for all γ ≤ 0.9) and ρ > 0 as well for the other
conditions, though the correlation is insignificant.

For this task and this approximately MDP-optimal RL algo-
rithm (VI-TAMER), converting the task to continuing does in-
deed appear to remove the adverse impact of reward positiv-
ity at high discount factors, overcoming the positive circuits
problem. However, based only on the roughly equivalent task
performance for all γ < 1 conditions, the choice of which dis-
counting to use is unclear. In the next subsection, we inves-
tigate whether higher-level task information was communi-
cated by the trainer, making learning more robust to changes
to the environment or more general at certain γ values.

Benefits of non-myopic learning
At non-myopic discount rates (i.e., γs near 1), reward can
communicate a desired policy, the goals of the task, or a mix
of the two. Using the full training data from this experiment
(up to 10 episodes or 450 time steps), we now investigate
whether the trained agents do learn more than a policy. Since
γ = 1 is generally inappropriate for continuing tasks, we ex-
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Figure 7. Illustrations of the two tests of the benefits of non-myopic
learning, testing agent performance after training. (a) Starting from
(highlighted) states off the optimal path. (b) Blocking the optimal path.
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Figure 8. Mean rate of successfully trained agents reaching the goal in
less than 100 time steps from the 10 states off of the optimal path. Stan-
dard error bars are calculated using a single agent’s success rate as one
sample.

pect γ = 0.99 to yield the best results. We restrict our anal-
ysis to those agents successfully trained to get to the goal 5
times in less than 300 steps. Thus, we effectively ask, given
that an agent learns a good (and usually optimal) policy from
human reward, what else does the agent learn?

We first test the learned policy from 10 states that are not
along the optimal path from the start state, which are high-
lighted in Figure 7a. These states may have never been expe-
rienced by the agent during training, in which case R̂H is built
without any samples from the state. Simple policy generaliza-
tion from nearby, optimal-path states would help in only some
of these 10 states, so the ability of the agent to get to the goal
reflects whether the agent has learned some information about
the task goals. Agents that had learned their policies at higher
γs were more often able to get to the goal in less than 100 time
steps (Figure 8). 18 of 19 successfully trained agents in the
γ = 0.99 condition reached the goal from every tested state.
We note though that different discount factors might lead to
different levels of experience in these tested states, providing
a confounding factor.

In the second test, an obstacle is placed in the state two cells
below the goal (Figure 7b), blocking the optimal path, and
we then determine whether the agent can still reach the goal
in less than 100 time steps. Thus, we test the effects of chang-
ing the task-optimal policy but keeping constant the task goal:
get to the goal state as quickly as possible. For the two
state-action pairs that previously transitioned into the newly
blocked state, the agent’s reward function is modified to out-
put 0 to reflect the agent’s lack of knowledge about how the
trainer would reward these transitions. In the γ = 0.99 con-
dition, 9 of 19 successfully trained agents reached the goal.
One agent from each of the γ = 0.9 and γ = 1 conditions
also reached the goal (of 14 and 12 total, respectively); no
agents with γ < 0.9 did.

These analyses support the conjecture that agents taught with
higher discount factors learn about the task goals themselves,
making the agents generally more robust to changes in the
environment and more able to act appropriately in previously
unexperienced states. That agents may learn task goals raises
the tantalizing prospect that, under the right circumstances,
an agent receiving reward from a human trainer could learn a
policy that is far superior to that envisioned by the trainer.
These benefits of non-myopic learning underscore the im-
portance of creating algorithms for complex, real-world tasks
that can learn non-myopically. As the next two sections con-
firm, achieving this goal is non-trivial.

LOCAL-BIAS EXPERIMENT
In considerably more complex domains than the 30-state grid-
world task used in our continuing-task experiment, agents
will likely be unable to perform value iteration with iter-
ating sweeps over the entire state; even ignoring the pos-
sibility of continuous states or actions, some tasks simply
contain too many states to quickly and repeatedly perform
temporal difference updates on all states. In anticipation of
scaling the high-γ, continuing-task approach found success-
ful in the previous experiment, we implemented a version of
value iteration that learns asynchronously, which we call aVI-
TAMER. Instead of updating each state once and then repeat-
ing as in VI-TAMER,4 aVI-TAMER updates state-action pairs
through the Monte Carlo tree search strategy Upper Confi-
dence Trees (UCT). UCT-based search has been successful
in tasks with especially large state spaces [8], originally in
games like Go [2] but also in more general reinforcement
learning tasks [3].

aVI-TAMER is mostly identical to VI-TAMER: the human re-
ward model R̂H is learned as before, using TAMER; a tab-
ular action-value function is maintained; and the agent acts
greedily with respect to that function. Unlike VI-TAMER,
aVI-TAMER’s “planning” consists of repeatedly considering
different possible 40-step trajectories from its current state.
Transitions from these trajectories provide updates for value
iteration.5 Planning trajectories are chosen by UCT [8],
where the search tree is reset at the start of each time step
to respect the corresponding change to the reward function
R̂H at that step, which generally makes past search results
inaccurate. The confidence value for UCT is 1.

For this aVI-TAMER algorithm, the number of updates to each
state’s value differs considerably among states; in contrast,
between sweep iterations in our value iteration implementa-
tion, all states have been updated an equal number of times.
Instead of a balanced distribution of updates, state transi-
tions that can quickly be reached from the current state re-
ceive many more temporal difference updates than transitions

4VI-TAMER is not synchronous in the strictest sense—where the en-
tire sweep across state updates with the same value function—but
we find this term “asynchronous” useful for distinguishing these two
approaches.
5Using experienced transitions for action-value-updating value iter-
ation is only valid for deterministic policies and transitions, as we
have here. Also, note that the update mechanism is not itself Monte
Carlo.



from less “local” states. For complex tasks in general, this
bias towards local updating appears desirable, since an effec-
tive learning agent will likely visit regions of the state space
that are worth understanding more often than areas that can
be ignored during learning. Additionally, this local updat-
ing bias occurs in a large fraction of common RL algorithms
(e.g., Sarsa(λ), Q-learning, and Monte Carlo tree search al-
gorithms). We chose aVI-TAMER as a representative of this
class of algorithms because it learns much more quickly than
most other locally-biased algorithms. However, we recog-
nize that there may be unforeseen benefits from the worse
MDP-based performance of these other algorithms, similar
to aVI-TAMER in the following section’s failure-state experi-
ment outperforming VI-TAMER in the episodic framing of the
task.

This experiment departs from the baseline set of agent, task,
and experiment specifications only by the inclusion of aVI-
TAMER as the algorithm for two conditions. Since this inves-
tigation is focused on the effect of locally-biased updates on
a high-γ algorithm, all three conditions calculate return with
γ = 0.99. We are primarily interested in two conditions: VI-
cont and aVI-cont, which respectively denote VI-TAMER and
aVI-TAMER acting in a continuing version of the task. Note
that this VI-cont condition is identical to the γ = 0.99 con-
dition of the continuing-task experiment of the previous sec-
tion; it is rerun here to account for the differing population
that subjects will be drawn from. As a third condition called
aVI-epis, we added aVI-TAMER in an episodic version to see
what gains are retained by making the task continuing when
updates are locally biased. The results of this experiment are
shown in Figures 9 and 10. All results concern the full dura-
tion of training unless otherwise specified . 26 subjects were
run per condition, resulting in the following number of sam-
ples by condition after filtering: VI-cont, 22; aVI-cont, 19;
aVI-epis, 18.

We observe that the results for the VI-cont condition are
similar to that of the equivalent γ = 0.99 condition in the
continuing-task experiment (shown in Figures 5 and 9). The
performance is insignificantly higher in this experiment by a
Fisher-Success test with a 10-episode threshold (p = 0.1085).
This experiment further supports the assertion that the VI-
TAMER algorithm successfully learns from human-generated
reward at high discount factors in the continuing task.

Effect of local bias in the continuing task
Comparing the two continuing conditions of this
experiment—VI-cont and aVI-cont—locally biased up-
dates result in worse performance than VI-TAMER’s uniform
updates (Figure 9). This difference is highly signifi-
cant by the 10-episode Fisher-Success test (p = 0.0001)
and by a MWU-Episodes-Finished test (p = 0.0016).
We also consider how many steps it took the agent to
reach the goal the first time: a MWU-Time-To-Goal
test is also highly significant (meanV I−cont = 93.45;
meanaV I−cont = 272.11; medianV I−cont = 70;
medianaV I−cont = 250; p < 0.0001), indicating that
the change to locally biased updates slows early learning.
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Figure 9. Success rates by condition for the local-bias experiment.
Through their bias towards updating “local” states, the aVI-TAMER con-
ditions create behavior that is farther from MDP-optimal for the current
reward function than is behavior learned by VI-TAMER. The top plot
shows success with the stopping points used for Figures 5 and 6, the first
of 5 episodes or 300 time steps. The lower plot displays success with this
experiment’s stopping points, the first of 10 episodes or 450 time steps.Ratios of positive to negative reward (γ=0.99)
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Figure 10. For the local-bias experiment, ratio of cumulative positive
reward to cumulative negative reward given by each trainer (with x-axis
jitter).

VI-TAMER effectively performs 4800 temporal difference up-
dates per time step (40 sweeps × 30 states × 4 actions per
state with deterministic transitions), compared to medians of
589 for the aVI-cont group and 1004 the aVI-epis group.
Though aVI-TAMER’s updates—dependent on the subject’s
computer—were less frequent, we doubt this difference is a
meaningful factor in the results; a four-fold increase in aVI-
TAMER’s update speed would add less than one level of depth
to its exhaustive search tree (which is extended by greedy roll-
outs to reach the full trajectory depth of 40).

Other than the number of updates per step, the only differ-
ence between aVI-TAMER and VI-TAMER in the continuing
conditions is which state-action values are updated. We sus-
pect that the locally-biased character of aVI-TAMER’s updates
is interacting with the positivity of human reward to lower
the aVI-TAMER’s algorithm’s performance. Specifically, lo-
cal bias causes nearby states to receive more updates, and the
positivity of reward—with an action-value function initial-
ized to 0, as in all experiments of this paper—makes states
that are updated more often appear more desirable, conse-
quently strengthening the local bias even further. In early
learning, the aVI-TAMER agent will not learn the true values
of states along its MDP-optimal path if it does not get near
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Figure 11. Heat maps showing value functions learned by VI-TAMER
and aVI-TAMER, where both maps in a column was created through the
same experience trajectory. Both learn from a training log from the VI-
TAMER condition, containing a sequence of state-action pairs and time-
stamped human reward signals. Training is stopped during the first step
at which the reward function specifies the task-optimal path to the goal.
4 logs were chosen from the 22 of the VI-cont condition at varying time-
to-first-goal values. The VI-TAMER algorithm used to create these heat
maps performs 2000 update sweeps per step, increasing from the 40 per
step in the experiment to approximate the MDP-optimal value function
with further accuracy. The aVI-TAMER algorithm experiences the same
trajectory, learning from 1000 planning trajectories per step. Each heat
map shows state values after learning of R̂H is stopped and the corre-
sponding algorithm performs one step worth of updates. The deepest red
corresponds to highest value of both value functions in the column, and
white squares represent the lowest values, which is 0 or less in all four
columns. The location of the agent at the trajectory’s stopping point is
shown by an agent-sized square.

those states, and policies that bring the agent back to pre-
viously experienced—and thus highly valued—states will be
followed. The value-function heat maps in Figure 11 support
this explanation of the performance differences; states that
are far from experienced states often have not been updated
even once and retain their original state values of 0.

One apparent solution to this problem of overly lo-
cal exploration—optimistically initializing the action-value
function—is not an option in complex domains for two rea-
sons. First, optimism leads to thorough exploration of the
state-action space. Such exhaustive exploration during train-
ing would frustrate, exhaust, and confuse the trainer, since
such exploration would include much behavior that goes
against the trainer’s feedback, making the agent appear unre-
sponsive and unable to learn for a considerable period. Thor-
ough exploration would also sacrifice the fast learning that is
one of the chief appeals of interactive shaping. Planning-only
exploration from optimistic initialization, where the agent’s
actual actions are greedy, might be possible, but it would be
greatly complicated by the following second reason that opti-
mistic initialization is problematic: the reward function R̂H is
constantly changing during training. If the agent reinitializes
its action-value function optimistically each time step, it for-
feits all knowledge gained during previous time steps about
action values under similar R̂Hs, knowledge that should be
critical to learning quickly to perform well with the new R̂H .
On the other hand, if the agent only initializes at the beginning
of training, then it will not explore with new R̂Hs, largely re-
moving the impact of optimistic initialization. Another op-
tion, optimistically initializing R̂H directly, also generally
creates exhaustive exploration.

Effect of episodicity for locally biased learning
Given that the locally biased updates of aVI-TAMER worsen
performance compared to the approximately MDP-optimal
performance of VI-TAMER, we now ask whether the choice
of episodic or continuing formulations still has an appreciable
effect in the context of aVI-TAMER’s locally biased updates.
Comparing these two conditions by the same three statisti-
cal tests applied above to compare the VI-cont and aVI-cont
conditions, none are significant (all p > 0.49) and the cor-
responding means, medians, and proportions for the tests are
quite similar across conditions.

The ratios of positive to negative reward in Figure 10 are neg-
atively and significantly correlated with success for aVI-epis
(Spearman-Success test, p = 0.035; ρ = −0.50) and uncor-
related for aVI-cont (Spearman-Success test, p = 0.45; ρ =
0.19), following the pattern observed from the continuing-
task experiment for VI-TAMER. We also look at how often
an agent relapses into sub-optimal task performance after an
episode that is completed in minimal time. As mentioned
previously, uniformly raising the value of all rewards by a
constant value does not affect the MDP-optimal policy for
a continuing task but often will for an episodic task. Con-
sequently, we suspect that trainers will generally give more
positive reward after their agent acts optimally (though their
reward is not necessarily uniformly higher), which may cause
more problems for the episodic aVI-TAMER condition. In the
aVI-cont condition, of the 11 agents that finish an episode
in minimal time during the first five episodes, 36.6% subse-
quently relapse into non-optimal behavior before reaching the
10-episode or 450-time-step endpoint. In the episodic con-
dition, 77.7% of the 9 such agents do. This difference is
marginally significant in a Fisher’s test (p = 0.0923).

In overall performance, aVI-TAMER-guided updates do not
clearly benefit from making the task continuing. However,
we do observe that success in the continuing version still ap-
pears unrelated to reward positivity. Additionally, the re-
lapse rate is lower in the continuing task. We suspect that
these strengths of the continuing version are balanced against
one advantage of the episodic version, that there is a sim-
ple but counterintuitive method for teaching the agent to act
task-optimal: giving only negative reward. This hypothesis
informs the following experiment.

FAILURE-STATE EXPERIMENT
In this experiment, the task is further manipulated to have
a failure state that is closer to the start state than the goal
state, as shown in Figure 12. In the episodic version of this
task, both failure and goal states are absorbing state; in the
continuing version, transitions to either create a transition to
the start state. When this modified task is episodic, giving
only negative reward will create MDP-optimal policies that
fail by repeatedly looping through the failure state. In de-
signing this task, we hope to represent the large class of tasks
for which failure can be achieved more quickly than the goal
(e.g., driving to a destination without crashing). In this task,
we predicted that the continuing version would outperform
the episodic version by a greater margin. This experiment
tests both this prediction and the generality of the results from



the other experiments, which thus far have been exclusively
demonstrated in a goal-only task.

We use the same algorithms and discount rate (γ = 0.99) as
in the previous experiment, adding as a fourth condition the
VI-TAMER algorithm with the episodic version of the task,
making this a full 2x2 experiment. We refer to the new con-
dition as VI-epis. Except for an additional instruction to
make the agent avoid the failure state—a “black pit that takes
[the agent] back to the start”—the experiment was conducted
identically as the baseline experiment until the agent reaches
the goal a 10th time. If a trainer reaches that point, instead of
stopping the experiment we allow the user to continue train-
ing until all 450 time steps have passed. We made this adjust-
ment to add resolution among the most successful trainers
(e.g., between trainers who would get the agent to the goal 11
times or 18 times). 20 subjects were run per condition; after
filtering the data (see The experiment for details), the number
of subjects were as follows: 15 for VI-cont, 16 for VI-epis,
14 for aVI-cont, and 14 for aVI-epis.

Figure 12. The task
with a failure state
added.

Results from this experiment are de-
scribed by Figures 14 and 15 and
the table of statistical test results
in Figure 13. Generally speaking,
we observe the same performance
patterns as in the experiments with
the goal-only task, though these pat-
terns are less pronounced. VI-cont
performs best in all comparisons,
significantly so in 5 of 6. For both
VI-TAMER and aVI-TAMER algorithms, performance is bet-
ter for the continuing version of the task, except for aVI-
TAMER’s mean rank of time to goal from the MWU-Time-To-
Goal test, where aVI-epis is insignificantly better than aVI-
cont. Interestingly, the new comparison between VI-epis and
aVI-epis reveals that the agent performs better in the algo-
rithm with locally biased updates, aVI-epis. We suspect that
this result arises because the sub-optimality of aVI-TAMER
makes it less likely to find existing positive circuits, which
could prevent the agent with a γ = 0.99 reward-based objec-
tive from going to the goal. In other words, failing to achieve
an undesirable objective can be better than achieving it. This
result raises the surprising prospect that the combination of
an agent objective that poorly aligns MDP-optimal and task-
optimal behavior combined with an agent that poorly maxi-
mizes that objective might produce better results than can be
achieved by any considerably sub-optimal agent attempting
to maximize a perfectly aligned objective.

We also examine reward positivity (Figure 15). For both
VI-TAMER and aVI-TAMER, reward was more positive in
the continuing version of the task, which fits observations
from the two experiments on the goal-only task. In VI-epis,
there is a marginally significant negative correlation between
success and reward positivity by the Spearman-success test
(ρ = −0.4266, p = 0.0994); this correlation is insignificant
for the other 3 conditions. Overall, we see that episodicity has
a smaller effect on reward positivity in this failure-state task
than in the goal-only task. We suspect that this observation

is connected to a previously described effect of adding the
failure state: that the simple strategy of always giving nega-
tive reward, without regard for the state or action, no longer
creates MDP-optimal behavior that is also task-optimal.

From analyzing these results, we believe that adding the fail-
ure state affected the ease of training in both positive and neg-
ative ways. As an alternate absorbing state to the goal, the
failure state generally forces trainers to give more discrim-
inating reward (e.g., the arbitrarily all-negative strategy for
the episodic version becomes unsuccessful). In comparison
to the goal-only task, on the other hand, the aVI-TAMER al-
gorithm preformed better overall in both the continuing and
episodic versions of the failure-task; this increase might be
due in part to the failure state being used as an intermediate
“goal” that the learner makes updates for, goes to, and then
gets experience and reward for those states near it, which then
help it go to the real goal. Because of these multiple factors
that likely affect performance (as well as randomness and dif-
ferent subject populations at different experiment times), we
hesitate to draw strong conclusions from comparisons across
experiments. However, we can say that this experiment does
not reveal an increased performance difference between the
aVI-epis and aVI-cont conditions, as we had predicted.

Nonetheless, the results from this experiment give additional
empirical support for the generality of the patterns that have
been identified previously in this paper, showing that they ap-
pear when the task contains both desirable and undesirable
absorbing state. Most important among these patterns are
that (1) performance is better for a continuing formulation
of the task—especially when the agent acts approximately
MDP-optimally as with the VI-TAMER algorithm—and that
(2) the choice of the best algorithm for complex tasks, where
MDP-optimal behavior is generally intractable, is a challeng-
ing direction for future work.

CONCLUSION
Any solution to the problem of interactive shaping—i.e.,
learning sequential tasks from human-generated reward—
requires the definition of a reward-based objective and an
agent algorithm. Building on previous work [7], this paper
examines the relationship between reward discounting rates,
episodicity, reward positivity, acting approximately MDP-
optimally or not, and task performance. These relationships
are examined thoroughly in a goal-only task and are exam-
ined further for non-myopic discounting only in a task with
both goal and failure states. The table in Figure 16 summa-
rizes our findings.

We see four main contributions in this paper:
1. empirically finding that for approximately MDP-optimal

agents, converting the otherwise episodic grid-world task
to a continuing task (a) enables successful training at non-
myopic discount rates, (b) removes negative correlations
between reward positivity and discount factor values, and
(c) removes negative correlations between reward positiv-
ity and task performance within non-myopic conditions;
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Figure 13. Statistical tests for comparisons of interest. Each cell contains the p-value for the corresponding test as well as the name of the condition
that performed better on the metric, which could be highest proportion of success, highest mean ranking of episodes finished, or lowest mean ranking
of time to first goal. (The Mann-Whitney U test converts samples to rankings.) Cells with p-values below 0.1 are emboldened.
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Figure 14. Success rates by condition for the failure-state experiment,
which investigates the effects of locally-biased updates (the aVI-TAMER
conditions) and episodicity when there is both a goal state and a failure
state.
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Figure 15. For the same experiment, the ratio of cumulative positive
reward to cumulative negative reward given by each trainer (with x-axis
jitter).

2. achieving the first known instance of consistently suc-
cessful training of a non-myopic agent by live, human-
generated reward signals;

3. demonstrating that successfully trained agents with non-
myopic objectives learn higher-level task information,
making them more robust to changes in their environments
and better able to act from states in which they lack expe-
rience;

4. and showing that when the agent’s MDP-based perfor-
mance is worsened—as it must be for complex tasks—by
the common practice of locally biased learning, task per-
formance worsens significantly in continuing tasks.

This paper represents a step forward in the effort to create ef-
fective algorithms for learning from human reward. We note,
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Figure 16. Qualitative summary of this paper’s experimental conclu-
sions on non-myopic learning.

however, that more analysis is required to establish the gener-
ality of our observations. Changing the reward-giving inter-
face, the mapping of reward cues (e.g. keys) to scalar values,
the instructions to trainers, our algorithmic choices, and the
task to be learned—though all carefully chosen to avoid overt
bias—might create qualitatively different results.

From this research, we believe that the greatest future con-
tributions of learning from human reward will come from
non-myopic objectives and will likely be in continuing tasks.
However, we expect that naively designed agents with biases
towards local updates—agents often well-suited for com-
plex tasks—will ineffectively learn from human reward even
in continuing tasks; the problems of reward positivity ex-
tend beyond episodic tasks. Identifying algorithms that learn
non-myopically from human-generated reward in complex
domains—where approximately MDP-optimal behavior will
likely be impossible—remains a critical research question.
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8. Kocsis, L., and Szepesvári, C. Bandit based monte-carlo planning.
Machine Learning: ECML 2006 (2006), 282–293.

9. León, A., Morales, E., Altamirano, L., and Ruiz, J. Teaching a robot to
perform task through imitation and on-line feedback. Progress in
Pattern Recognition, Image Analysis, Computer Vision, and
Applications (2011), 549–556.

10. Pilarski, P., Dawson, M., Degris, T., Fahimi, F., Carey, J., and Sutton,
R. Online human training of a myoelectric prosthesis controller via
actor-critic reinforcement learning. In IEEE International Conference
on Rehabilitation Robotics (ICORR), IEEE (2011), 1–7.

11. Suay, H., and Chernova, S. Effect of human guidance and state space
size on interactive reinforcement learning. In 20th IEEE International
Symposium on Robot and Human Interactive Communication
(Ro-Man) (2011), 1–6.

12. Sutton, R., and Barto, A. Reinforcement Learning: An Introduction.
MIT Press, 1998.

13. Tenorio-Gonzalez, A., Morales, E., and Villaseñor-Pineda, L. Dynamic
reward shaping: training a robot by voice. Advances in Artificial
Intelligence–IBERAMIA (2010), 483–492.

14. Thomaz, A., and Breazeal, C. Teachable robots: Understanding human
teaching behavior to build more effective robot learners. Artificial
Intelligence 172, 6-7 (2008), 716–737.


	Introduction
	Concepts and definitions
	Background
	Preview of experiments

	Baselines for the Task, Agent, and Experiment
	The task
	The agent
	The experiment

	Continuing-task experiment
	Experiment and analysis of results
	Benefits of non-myopic learning

	Local-bias experiment
	Effect of local bias in the continuing task
	Effect of episodicity for locally biased learning

	Failure-state experiment
	Conclusion
	REFERENCES 

